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Rotation and the internal structures of the major planets
and their inner satellites

By S. F. DErMoTT

Center for Radiophysics and Space Research, Cornell University, Ithaca,
New York 14853-0355, U.S.A.
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Measurements of the rotational periods coupled with those of the masses, the mean
radii and the shapes or the gravitational moments (J, and J,) enable important
constraints to be placed on the internal structures of some remote bodies. Values of
J, for Uranus and Neptune have been calculated from the observed precession rates
of the narrow eccentric and inclined Uranian rings and of the orbit of Triton,
Neptune’s massive satellite. Recent observations of the motions of spots have yielded
reliable rotational periods for these planets. These observations are used to show that
Uranus and Neptune may have quite different internal structures. The shapes of
satellites that are close to their primaries may yield information on the degree of
internal differentiation of these bodies. Io, Mimas, Enceladus and Miranda are of
interest in this respect. Residuals in the observed precession rates of the Uranian rings,
¢ca. 0.005° /day, that cannot be accounted for by the best-fit model of J, and J, may
be related directly to observed irregular variations in ring width of magnitude over
2 km and may indicate the existence of shepherding satellites with mass ratios of over
10719, If this is the case, then the effects of these satellites on the precession rates of
the rings will result in an appreciable uncertainty in the value of J, for Uranus.
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1. INTRODUCTION

The external gravitational field of a non-rotating planet in hydrostatic equilibrium would give
no clue as to the nature of its internal structure. However, slow rotation of such a body produces
an axially symmetric distortion and the magnitude of the equatorial bulge is determined by
both the magnitude of the disturbing potential and the internal density distribution. The
observables are the rotational period 7, the mean density p, the oblateness, f = 1—R /R,

(where R, and R, are the polar and equatorial radii), and the coefficients J,, J,, ... in the
harmonic expansion of the external potential. The magnitude of the disturbing potential in

A

p
s

this problem is determined by the ratio ¢ of the centrifugal and the gravitational equatorial
accelerations. ¢ = 3Q22/4nG{ p), where Q is the rotational frequency and G is the gravitational
constant. The oblateness f of some equipotential surface (exterior to the planet) of equatorial
radius R, that rotates as a whole at some frequency £ and the coefficient J, in the harmonic

SOCIETY

expansion of the gravitational potential external to that surface are related (to first order in

THE ROYAL

small quantities) by
2f=3J,+g¢, (1)

where {p) is the mean density of the material interior to the surface and R, is the normalizing
radius in the expansion of the potential. In applying this equation, one should be aware that
the rotational frequency of the surface and that of the ‘solid’ body of the planet may be different
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and that R, may not be equal to the equatorial radius of the planet R, which, for modelling
purposes, is usually taken to be the surface at which the pressure is 1 bar (Hubbard 1984)1.

In this paper, we are chiefly concerned with the internal structures of Uranus and Neptune.
For these planets, since ¢ € 1 (see table 1), J, and f increase linearly with ¢. Hence, the ratio
Jo/f is independent of ¢ and only depends on the internal density distribution. The
Darwin—Radau relation makes the stronger statement that J,/f depends only on the moment
of inertia factor C (= I/ MR?, where [ is the moment of inertia and A is the mass of the planet).
In fact, J,/f only places an upper bound on C. The point-core model, in which the mean density
and the moment of inertia factor are reproduced by a model planet with a mantle of uniform
density and a massive point-core, places a lower bound on C. We use these bounds to compare
the internal density distributions of the major planets.

Other topics discussed in this paper include the influence of putative shepherding satellites
on the precession rates of the Uranian rings and the effect that these satellites may have on
the determination of J, and J,. We also use our bounds on the moment of inertia factor C to
place bounds on the shapes of the satellites o, Mimas, Enceladus and Miranda. Voyager
observations of the shapes of o and Mimas are now available (Davies 1983 ; Davies & Katayama
1983) and it would appear that the mean shapes are too spherical to be accounted for by any
reasonable density distributions.

2. THE DARWIN-RADAU RELATION

The bounds that can be placed on the moment of inertia factor are best illustrated by a
specific example. The oblateness f and the gravitational moment J, of a model planet in
hydrostatic equilibrium with a uniform core of density p and radius r and a uniform mantle
of density o and outer radius unity are given by

J=3%Hqg, (2)
Jy=3(H-3%)q, (3)
in which the dimensionless constants are

__3Kpo/p) [1+3(8/y) "]
3o /p)+8—355(8/7) (a/p)r*

8= (1—a/p)r® (5)
and y=%+i0/p (6)

(Dermott 1979a,b). (For a planet of uniform density in hydrostatic equilibrium H is unity.)
For this particular model

C=%a/<{p>+(1=a/{p))r] (7)
and {p>/p=d+a/p. (8)
Specifying C and 7 uniquely determines o /p, H and J,/f. Plots of J,/f against C for particular

t 1 bar = 10° Pa.


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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values of 7 are shown in figure 1. The bounds on C for a particular value of J,/f that are found
from (2)—(8) by allowing 7 to tend to zero and unity are

C—E¥(E-C) < J/f<C. (9)

The lower bound on J,/f is equivalent to the Darwin—Radau relation (Darwin 1899) and the
upper bound is that given by the point-core model. It can be shown that these bounds apply
to any planetinstable, hydrostatic equilibrium. The Darwin—-Radau bound follows immediately
from the fact that the function ¢r(5) defined by Radau’s equation

Y(n) = (L+ip—7m?)/(1+7)k (10)

has a maximum value of 1.00074. In the derivation of the Darwin—-Radau relation, ¥ (7) is set
equal to unity (see, for example, Jeffreys 1970). However, for certain planetary models,
particularly those for which the moment of inertia factor is low, this is not a good

approximation.
0.4 . T ,
Earth
Jupiter Neptune
3 02k .
E Saturn —,
<« Uranus
B §
(3 ]
& /
NV &
< g
1 S !
0 0.2 04

moment of inertia factor, C

Ficure 1. Bounds on the moment of inertia factors C can be estimated from the observed values of J,/f. Independent
of any interior model, we can state that Saturn is more centrally condensed than Jupiter and that Uranus is
probably the most centrally condensed planet in the Solar System. The oblateness f of Neptune is calculated
from J,, {p> and T (= 18.240.4 h: see table 1), and the same procedure has been followed for Jupiter and
Saturn. It would appear that Neptune and Uranus have quite different interiors.

The bounds on C given by (9) allow us to make statements about the internal density
distributions of the planets that are independent of models of their interiors. For example, Saturn
is less massive than Jupiter and has a considerably lower mean density (see table 1) and yet
the observed values of J, /f (or, in these cases, J,, T'and { p)) indicate thatit has a lower moment
of inertia factor. Thus, since Saturn is much more centrally condensed than Jupiter, the planets
probably have quite different chemical compositions.

It is also useful to note that J,/f is roughly equal to C. Thus, plots of dC/dR and dM/dR
against R for a model interior indicate those parts of the planet that actually constrain the model
through the observables J,, f; T and {p). Typical models of Jupiter (Hubbard, personal
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Ficure 2. The contributions of the outer layers of Jupiter (and Saturn) to the moment of inertia factor C and the
mass M are small (a). Hence, the differential rotation of the outer layers depicted in (5) has only a small effect
on J, and f.

communication, 1983), for example, are dominated by the contributions from the material at
R =~ 0.8 (see figure 2). Material with R < 0.3 makes a negligible contribution to C and this
material could be replaced by a point-core: the structures of the cores of the giant planets cannot
be deduced from their observed gravitational moments.

The observed zonal currents in the atmospheres of Jupiter and Saturn are highly symmetric
with respect to their equators and this suggests that angular velocity is constant on cylindrical
surfaces parallel to their rotation axes (Ingersoll & Pollard 1982): see figure 2. Thus, our
implicit assumption of solid body rotation may be violated in the outer layers of these planets.
However, even on Saturn, the high velocity zonal currents are confined to latitudes within 20°
of the equator and these correspond to R > 0.94. Beyond R = 0.8 both dC/dR and dM/dR
decrease markedly and material with R > 0.94 makes only small contributions to C and A.
Hubbard (1982) has shown that the allowances that have to be made for differential rotation
are small. For Saturn, R,— R, & 5000 km, of which the zonal currents make a contribution
ca. 50 km. The corresponding figures for Jupiter are 4600 and 6 km, respectively. Moreover,
the corrections that have to be made to J,, J,, ... for modelling purposes can be made in a
manner that is largely independent of the model interior. Thus, possible complications due to
differential rotation pose only a minor problem to the modelling process. However, the existence
of large zonal currents does call into question the true ‘solid-body’ period of the planet. Allison
& Stone (1983) have suggested that the solid-body period of Saturn may be about 19, less
than the radio period. By using the Darwin—Radau relation, it can be shown that for Saturn
a 19, error in T would be equivalent to a 2.79, error in J,. Accurate values for the higher
gravitational moments J, and J are of little use without a correspondingly accurate value of
T (Hubbard 1984).
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3. UraNUS

For the purposes of this discussion, the uncertainties in the mean densities of Uranus and
Neptune can be neglected. In using J,/f to compare the moment of inertia factors, therefore,
one has to choose between using the observed value of for the value derived {from the observed
values of J, and T through (1).

J, for Uranus is now known with great precision from observations of the precession rates
of the narrow eccentric and inclined rings (Elliot & Nicholson 1984). The putative shepherding
satellites have a negligible effect on the determination of J, but this may not be the case for
J, (see §5). Since the rotational period of Uranus is still uncertain, the observed value of f is
probably the most useful parameter. Analysis of Stratoscope II images of Uranus yields
S =0.022+0.001 (Franklin et al. 1980), hence J,/f = 0.153+ 0.008 (the cross-hatched area in
figure 1). This value of f has a useful precision and refers to a region near the cloud deck,
however, the analysis assumes that there is no latitude-dependent limb darkening (French
1984). Stellar occultation observations yield f= 0.024+0.003 (Elliot ¢t al. 1981) and
Jof/f = 0.14240.018 (the hatched and cross-hatched area in figure 1). This value of f is
unaffected by limb-darkening but refers to a level at a pressure ca. 1 pbar at a height ca. 500 km
above the clouds. If there are significant meridional temperature gradients in the region
between these atmospheric levels, then the oblateness could vary substantially with height, as
was found by French & Taylor (1981) for Mars (French 1984). Furthermore, French (1984)
points out that the half-light points used in the occultation method lie on a surface, which may
differ substantially from an equipotential surface, particularly if, like Uranus, the atmosphere
has strong vertical temperature variations (French et al. 1983).

Despite these problems, we note that the two independent methods of measuring f give
consistent values. The value f = 0.024 4+ 0.003 implies a rotational period of 15.6+ 1.4 h (Elliot
& Nicholson 1984) and this is consistent with the weighted mean of the observed periods
(16.31£0.27 h) quoted by Goody (1982). More importantly, O’Meara (1984) has recently
reported observations of the motions of spots on Uranus and these give periods of 16.0, 16.2
and 16.4 h. These variations presumably indicate the existence of moderately strong zonal
currents. This level of consistency suggests that we can be reasonably confident that J,/f for
Uranus is close to 0.15.

For J,/f ~ 0.15, the bounds on C given by (9) and figure 1 are not particularly useful.
However, consideration of the possible equations of state imposes tighter bounds and I have
found that existing planetary models (Hubbard, personal communication) plot in the region
between the r = 0.5 and the Darwin-Radau lines. For the uniform core—uniform mantle
discussed in this paper, if r = 0.5, then for C < 0.2 we must have o/p < . This very high
density contrast implies that values of J,/f corresponding to C < 0.2 and r < 0.5 should be
regarded as highly unlikely. Hence, from figure 1, it can be deduced that C = 0.20+0.03 and
that Uranus is probably the most centrally condensed planet in the Solar System.

4. NEPTUNE

The precession rate of Triton’s inclined orbit has been rediscussed by Harris (1984) in a major
new analysis of all the available photographic observations. The analysis is complicated (or
made more interesting) by the fact that the orbital angular momentum of Triton is not
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negligible compared with the spin angular momentum of Neptune. J, is given by

4(a\? T, sin ¢
==} —t 11
e 3(Rr) sin 2(i+¢€) T, (11)

where ¢ is the inclination of Triton’s orbit to the invariable plane, € is the angle between
Neptune’s spin axis and the pole of the invariable plane, 7 is Triton’s orbital period, 7}, is
the nodal precession period and a is the semimajor axis or radius of Triton’s circular orbit. Since
the components in the invariable plane of the orbital angular momentum of Triton and the
spin angular momentum of Neptune are equal and opposite, we have

2
sine=%(Rie) Aﬁ/[sin Z, (12)
where m/M is the mass ratio of Triton and Neptune and 7 is Triton’s mean motion. Since the
spin of Neptune £ is prograde, whereas Triton’s orbit is retrograde (Belton & Terrile 1984),
n and £ have opposite signs and the coeflicient in (12) is negative.

The only appreciable uncertainties in (11) are those associated with the angles ¢ and e.
Harris’s analysis of the photographic observations, which span 139, of the precession period,

yields i=21.0°+1.5° (13)

Alden (1943) obtained the mass ratio
m/M = 0.00128 4 0.00023 (14)

from observations of the barycentric motion of Neptune against the background stars.

Measurements of Neptune’s rotational period have recently been reviewed by Belton &
Terrile (1984). Techniques for extracting iﬁeriodicities from extended time-series of photometric
observations yield a number of precise periods in the range 17.71 to 18.56 hours (Slavsky &
Smith 1978; Brown et al. 1981; Belton ¢t al. 1981). Recent observations of the motions of the
spotlike markings seen on Neptune when the planetis imaged in a narrow range of wavelengths
centred on the 8900 At methane absorption band (Smith et al. 1979) leave no doubt that these
periodicities represent true atmospheric rotational periods. The bright spots have been tracked
over 7 Neptune rotations and yield an atmospheric rotation period of 17.83+0.1 h (Terrile
etal. 1984). Belton & Terrile (1984) conclude that zonal currents exist on Neptune with velocity
contrasts of at least 109 m s™ and that the ‘solid-body’ period of the planet is probably
18.2+0.4 h.

J, for Neptune can be obtained from Harris’s analysis through (11) and (12), but only if
we have estimates of C and Q. If we assume that C is given by the Darwin—Radau relation
and adopt Belton & Terrile’s range of periods, then (1), (9), (11)—(14) can be solved to give
the following self-consistent range of values:

€=—2.5°4+0.7°;
i+€e=18.6°1+1.8°
J, = 0.004140.0003;
S=0.01704+0.0010;
Jof/f =0.2440.02;
C=0.272+0.013;

+1A=101m = 0.1 nm.
9 Vol. 313. A
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Values of J,/f for Neptune are shown in the upper hatched region of figure 1. Since the above
values of C are high, the Darwin—Radau relation in this case is a good approximation: witness
how close the r = 0.5 and the Darwin—-Radau lines are in figure 1. The above values of f are
marginally consistent with the observed value of 0.021 +0.004 (Kovalesky & Link 1969). The
results of the 1983 occultation of Neptune should give a more precise value, but these have
yet to be published.

Harris (1984) has questioned Alden’s value for mass ratio m/ M. If| to take the extreme case,
Triton’s mass is negligible and € = 0, then f= 0.0164+0.0008 and J,/f is reduced to
0.225+0.015. However, this does not affect our main conclusion, namely that if Neptune’s
rotational period is in the range 18.2+ 0.4 h, then the moment of inertia factors of Uranus and
Neptune are quite different and the planets must have widely different chemical compositions.
The differences in J,/f shown in figure 1 are broadly consistent with a decrease in the H,~He
mass fraction for the major planets with increasing distance from the Sun.

5. SHEPHERDING SATELLITES

The nine Uranian rings are probably confined by a number of ‘shepherding’ satellites
(Goldreich & Tremaine 1979) and these satellites may make appreciable contributions to the
observed precession rates (Freedman et al. 1983). The pericentre precession rate @ arising from
the gravitational field of an oblate planet, can be written as

o = J,~3,(R/a)?, (15)

2at

h =
where ¢ SCM)IRE

(16)
and a is the geometrical semimajor axis of the best-fitting ellipse traced by the ring particles (Elliot
& Nicholson 1984). A plot of ¢& against 3(R,/a)? should be a straight line of slope —J, and
intercept J,. Figure 3 shows such a plot for data from the 1981 M.I.T. Uranian ring model
(Elliot et al. 1981). The points represent the individually fitted precession rates, whereas the
quoted values of J, and J, were determined from the data set as a whole. Figure 3 not only
shows that J, was then poorly determined, but also suggests that some of the observed
discrepancies may be real, particularly that associated with ring 6 which has a magnitude of
0.011 deg/day (cf. &g = 2.771 deg/day).

French et al. (1982) have since shown that some of the Uranian rings are not only eccentric
but are also inclined to the equatorial plane of the planet. The inclusion of the inclinations in
the best-fit model reduces the residuals. However, discrepancies in @, ca. 0.005 deg/days, still
remain (Elliot & Nicholson 1984 ; Freedman et al. 1983) and it is worth asking if these could
be due to small, nearby satellites and how that hypothesis could be tested. Freedman et al. (1983)
have discussed a number of the effects that small satellites would have on the rings, but I point
out here that confirmation of the existence of small satellites could probably be most directly
achieved by the detection of irregular ring-width variations, that is, width variations not
associated with the regular harmonic variation of ring width with true anomaly.

A small satellite of mass m exerts a tidal torque I" on a nearby, narrow, near-circular ring.

I' = 0.399(Gm/nx?)% m,, (17
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I T T I
341~ 1981 M.LT. ring model .
= + —3
sgol J2=(8:352£0006)x10 {6 |

J, =(—29113)x107®

103¢6

3.37

3.35~

1 1 1 1
0 0.5 1.0

§(R/a)®

Ficure 3. The individual precession rates & are compared with those predicted from the best-fit values of J, and
J, as calculated by Elliot ¢t al. (1981). It would appear from these results that the shepherding satellites may
make significant contributions to the precession rates.

where x is the mean radial separation of the satellite and the ring, z is the mean motion of the
ring particles and m;, is their total mass (Goldreich & Tremaine 1982). Regardless of whether
the satellite orbits inside or outside of the ring, the radial gravitational forces that it exerts act
to increase the ring’s pericentre precession rate by

& = (nm/2rM) (a/x)2. (18)

The satellite also raises a near-sinusoidal wave on the ring of wavelength
A = 3mx (19)
and amplitude A=224(m/M) (a/x)%a (20)

(Julian & Toomre 1966; Dermott 1981). Since the net external torque on a ring confined by
two satellites and in equilibrium must be zero,

my/x] = my/x3, (21)

where the subscripts refer to the two satellites. It follows that the magnitudes of 8@ and 4
associated with each satellite are equal (Dermott 1981). Hence, we can write

86, = (n/2.247) (4/a), (22)

where 84, is the total increase in the precession rate due to both satellites. If 3@, & 0.005 deg/day,
then each satellite raises a wave on the ring of amplitude 4 & 1.3 km. These waves can interfere
constructively to produce waves of amplitude 24 (Dermott 1981). More importantly, if the
orbits of the satellites or the ring are eccentric, then 8@, will be largely unchanged but there
could be large variations in 4. For this reason, equation (22) should be regarded as an
approximation.
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FIGURE 4. A small satellite generates waves of length 37x, where « is the distance of the satellite from the ring particles.
In (a) we show the resultant wave pattern in a reference frame rotating with the perturbing satellite. There
is a small variation in wavelength across a ring of finite width and this results in a variation in width downstream
from the satellite (). (Copyright of the University of Arizona Press.)
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For a ring of finite width W, there is a variation of x and wavelength across the ring and
this can result in large variations in ring width downstream from the perturbing satellite
(Dermott 1984): see figure 3. For most of the Uranian rings it is probable that W > 24, hence
the largest variation in width due to one of the satellites is 24. It is now well established that

PHILOSOPHICAL
TRANSACTIONS
OF

the widths of the a- and B-rings of Uranus vary harmonically with true anomaly. The widths
of both of these rings increase from a minimum of ca. 5 km near pericentre to a maximum of
¢a. 10 km near apocentre (Elliot & Nicholson 1984; P. D. Nicholson & K. Matthews, personal

1.0
0.8
2 m
_go =
=~ g
—~ %
< &
e %
@) : 0.6
e
k= O
= O
= uw
0.4

0 0.2 0.4
moment of inertia, C
Ficure 5. For a given shape factor H, the moment of inertia factor C must lie between the upper bound given by
the Darwin-Radau relation and the lower bound given by the point-core model. Observed values of H for
Io and Mimas are from Davies (1983) and Davies et al. (1983), respectively. Only the upper bound on H for
Mimas can be shown.
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communication 1984). Over and above these regular width variations, Nicholson & Matthews
consider that there is evidence for irregular variations of magnitude of over 2 km. If these
observations are substantiated, then I should consider that we have clear evidence for the
existence of shepherding satellites. I should further expect these rings to show associated
discrepancies in their precession rates (of both pericentre and node) of upper magnitude ca.
0.004 deg/day given, approximately, by (22).

A discrepancy 8¢ =~ 0.005 deg/day could be produced by satellites, for example, of mass
ratios m/ M = 6 x 1071° or diameters ca. 40 km separated from the ring by ca. 300 km. (Note,
the necessary masses increase as x%.) Since the contributions to ¢ of the J, term in (15) are about
0.02 deg/day, it follows that the contributions due to the shepherding satellites may have to
be determined before J, is known with useful accuracy.

6. SHAPES OF SATELLITES

If a satellite is rotating synchronously in a near-equatorial and near-circular orbit, and the
tidal and rotational deformations are small (¢ <€ 1), then the total deformation of the satellite
can be found by calculating these deformations separately and adding them linearly. The tidal
potential U; at some point (r,0) within the satellite is given by

Uy = — (GM/a®) r*Py(cos 0), (23)

where 0 is the angle between r and the line joining the planet and satellite centres and F,(cos 6)
is a Legendre polynomial. The rotational potential U, at the same point is given by

U, = 32%r*Py(cos ¢), (24)
where ¢ is the angle between r and the axis of rotation. From Kepler’s third law we obtain
U, = {(GM/a®) r*Py(cos ¢). (25)

As the deforming potentials are both second-degree solid harmonics, the theory that has been
developed for rotational deformation can be applied directly to the tidal deformation. In
particular, we can use the point-core model and the Darwin-Radau relation to place bounds
on the total deformation (Dermott 19795).

The differences between a, b and ¢, the principal radii of the triaxial ellipsoid that describes
the satellite surface, are given by

(b—a)/(c—a) =} (26)
a—c¢ = 5HqR. (27)

For a homogeneous satellite in hydrostatic equilibrium H is unity. For all other internal density
distributions H is bounded by

+¥(1-30)7 < H<H1-§0], (28)

where the lower limit is obtained from the Darwin-Radau relation and the upper limit from
the point-core model (Dermott 1979a).

Values of g, # and ¢ for Io, Mimas and Enceladus have been obtained by Davies (1983) and
Davies & Katayama (1983) from Voyagerimages using an analytical triangulation programme:
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see table 2 and figure 5. The results for Io are based on 10926 measurements of 650 control
points on 203 Voyager 1 and 43 Voyager 2 images: 2018 linear simultaneous equations are
solved in the analytical triangulation and the over-determination factor is 5.41. The results for
Mimas and Enceladus are not so well determined (Davies & Katayama 1983).

The mean value of H for Mimas cannot be shown in figure 5, since values of H < 0.4 are
physically impossible. The mean value of H for Io is possible but unrealistic. Values of C as
low as 0.2 cannot be achieved unless the outer layers of a planetary body are gaseous: see §2.
Most satellite models have C 2 0.3 and H 2 0.7. Consider, for example, the model satellites
shown in figure 6. The model in figure 64 applies to Io and consists of a satellite of mean density

(a) (b)
10 T T T | T T
To Mimas
‘e 3
0.8 mantle . - core 24 .
Y density density /
g 3
& 2 5
8-/
4 1
0.6 — - —
core density =8g cm™3 mantle density=0.9 g cm™
0.4 | | | | 1 |
0 0.5 1 0 0.5 1
radius radius

Ficure 6. The shape factors H of (a) a satellite with the mean density of Io (3.56 g cm™3), a uniform iron core of
density 8 g cm™ and a range of mantle densities and core radii, and () a satellite with the mean density of
Mimas (1.42 g cm™®), a uniform icy mantle of density 0.9 g cm™ and a range of core densities and radii. In
both cases, shape factors H much below 0.7 cannot be achieved with reasonable model interiors.

3.56 g cm™® with a uniform iron core of density 8 g cm™2 and a uniform density mantle. Values
of H are shown as a function of core radius: the numbers on the curve refer to the mantle density
. Since, for the de-volatilized Io, we must expect o > 2 g cm™3, H 2 0.7. The model in figure
66 applies to Mimas and consists of a satellite of mean density 1.42 g cm™ with a uniform icy
mantle of density 0.9 g cm™. Values of H are again shown as a function of core radius, but
the numbers on the curve now refer to the core density p. Since we must expect p < 8 g cm™3
H = 0.66.

If the mean density of Mimas is as high as 1.42 g cm™ (the mass of Mimas obtained from
the analysis of the Mimas-Tethys resonance by using ground-based observations of the
libration period and the libration amplitude implies the much lower mean density of
1.16+0.06 g cm™2: see table 2), then the upper bound on the observed value of H is marginally
consistent with a differentiated satellite with a large (r & 0.5), rocky-iron core and an icy

3
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mantle. If the mantle has a density lower than that of water ice, or if the mean density of the
satellite is more than 1.42 g cm™3, then the observations of Davies et al. (1983) would be easier
to account for.

If ¢ is not very small, then the tidal and rotational deformations cannot be added linearly.
The deformation of a homogeneous satellite in hydrostatic equilibrium has been calculated by
Chandrasekhar (1969). His results can be described by

¢/a = 1—57—2.626¢% — 174¢°, (29)
bla=1—18g—12.7¢*—171¢", (30)
(b—c)/(a—c) = 1(1—10gq). (31)

The calculated values listed in table 2 were obtained by using (29) and (30). For some of the
inner satellites of the major planets, particularly Mimas, the deviations of the ratio (b—¢)/(a—c¢)
from 0.25 are not negligible: see table 2. As ¢ increases, & tends to ¢ and the figure becomes
more oblate and less triaxial. However, it would appear that these corrections for nonlinearity
cannot account for the very small deformations of Mimas observed by Davies et al. (1983), even
though these authors did assume that (b—c¢)/(a—¢) = 0.25.

The spectacular volcanism of Io, the very high value of the observed heat output
(@ 2 1 Wm™2 (Pearl & Sinton 1982)) and the observation that the long-axis of the best-fit
triaxial ellipsoid is significantly displaced from the sub-Jupiter direction (Davies 1983) suggest
that the interior of o is convecting and that the associated, horizontal variations of density
may contribute to the observed figure (S. K. Runcorn, personal communication 1983).

The Navier—Stokes equation describing slow convection in a planetary interior, in which the
forces arising from rotation may be neglected, is

pvViv = Vp+gapT, (32)

where p is the density, v the kinematic viscosity, v the velocity, p the pressure, g the gravity,
a the coefficient of volume expansion and 7T the temperature. Dimensional analysis of this
equation gives

pvo/R? = gApy, (33)

where Ap,, is a horizontal density difference. If we now make the approximations
Apy = (h/R) p = apAT; (34)
and Q = pCyvAT,, (35)

where £ is the height of the convective bulge, AT, is a horizontal temperature difference and
C, is the specific heat, then we obtain

h= (vaxQ/gk), (36)

where « (= k/pC,,) is the thermal diffusivity and & the thermal conductivity. Substituting
a=3x10"°K L k=10°*m?s!, g=1.8ms ?and £ = 4W m™! K7! (Schubert et al. 1981)
into this equation yields

h=2x1078 1. (37)
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Thus, a substantial bulge of £ & 4 km, for example, requires that Io has a kinematic viscosity
of 4x 1018 m2 571,

Tozer (1965) has argued that the viscosity of a convecting planetary interior is self-regulating
and adjusts to a value consistent with the removal of the internally generated heat by convection
and the minimization of the vertical (or radial) temperature difference AT,. We estimate that

v = 0.0005agk*AT?/kQ? (38)
(Schubert et al. 1981). From this and (36) we obtain
h=0.020kAT2/Q, (39)

and, since AT, cannot exceed ca. 1500 K, £ ~ 6 m and can be neglected.

The upper bound on H for Io determined by Davies (1983) is consistent with that of a
differentiated satellite with a large (r & 0.5) iron core; however, we cannot allow that the long
axis is offset from the sub-Jupiter direction: perhaps it is merely a reflection of the uncertainty
in H?

The comparatively smooth surface of Enceladus is a good indication that the mean surface
of the satellite is close to hydrostatic equilibrium. A value of a—¢ for Enceladus has been
obtained by Davies & Katayama (1983), but the mean density of the satellite is uncertain and
our formulae cannot be applied directly. (The satellite is involved in a resonance with Dione,
but the amplitude of libration is very small and difficult to observe.) However, if a satellite
is differentiated, which is probably the case for Enceladus, and has a deep mantle of known
material (water ice, for example), then a determination of a—¢ and R leads to useful estimates
of the mean density, mass and moment of inertia. This statement applies if the core is of such
a size and density that it can be sensibly replaced by a point mass. We would then have

H=2%/[1-3c/<{p>)] (40)
and {p) =30+ 3Q2R/21G(a—7). (41)

For example, if a—¢=8km, R=251km (see table 2) and o =0.9gcm™3 then
(py=12gcm™3 m="7.9%x1022g and C = 0.30. Here, I have assumed that the mantle has
a uniform density but this is not essential to the argument. We only have to assume that the
mantle has a known density distribution. The value of the mean density is consistent with that
obtained from more direct estimates of the mass, but, to be useful, a—¢ would need to be
measured to within ca. 1 km.

This research was supported by NASA grant NAGW-392.
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Discussion

A. H. Jupp (University of Liwerpool, Liverpool, U.K.). Dr Dermott’s equation for the secular rate
of change of the apse longitude, from which he computes J,, puzzles me. The approximate
values he gives for J, and J, are such that J2 = O(J,). It would seem to be the case, therefore,
that the equation referred to should contain the second-order contribution from J2 in addition
to the linear terms in J, and J, which he includes. The consequences of this correction would
probably change his value of J, and also the gradients of some of the graphs he has shown
us.
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S. F. DErmMoTT. The expression which I give for the secular rate of change of the apse longitude,
@, does not contain a JZ term but it is correct. The differences between the many different
expressions for @ that appear in the literature have been reconciled by Greenberg (1981). The
particles in the rings of Uranus precess as a whole, and at the level at which the JZ and the
J, terms are important one must be careful to distinguish between the geometrical parameters
describing the elliptical ring and the osculating orbital elements of the particles moving in the
ring. In equations (15) and (16) a is the observed (not the osculating Keplerian) semimajor
axis of the ring.
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